Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38321605

RESUMO

Given the multifactorial pathogenesis of atherosclerosis (AS), a chronic inflammatory disease, combination therapy arises as a compelling approach to effectively address the complex interplay of pathogenic mechanisms for a more desired treatment outcome. Here, we present cRGD/ASOtDON, a nanoformulation based on a self-assembled DNA origami nanostructure for the targeted combination therapy of AS. cRGD/ASOtDON targets αvß3 integrin receptors overexpressed on pro-inflammatory macrophages and activated endothelial cells in atherosclerotic lesions, alleviates the oxidative stress induced by extracellular and endogenous reactive oxygen species, facilitates the polarization of pro-inflammatory macrophages toward the anti-inflammatory M2 phenotype, and inhibits foam cell formation by promoting cholesterol efflux from macrophages by downregulating miR-33. The antiatherosclerotic efficacy and safety profile of cRGD/ASOtDON, as well as its mechanism of action, were validated in an AS mouse model. cRGD/ASOtDON treatment reversed AS progression and restored normal morphology and tissue homeostasis of the diseased artery. Compared to probucol, a clinical antiatherosclerotic drug with a similar mechanism of action, cRGD/ASOtDON enabled the desired therapeutic outcome at a notably lower dosage. This study demonstrates the benefits of targeted combination therapy in AS management and the potential of self-assembled DNA nanoformulations in addressing multifactorial inflammatory conditions.

2.
Integr Zool ; 2023 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-37804522

RESUMO

Pheromones and olfactory communication play vital roles in sex recognition and mate choice in rodents. Asian house rats (Rattus tanezumi) (RT) often startle easily, making behavioral measurements difficult to carry out accurately in the laboratory. Here, the behavioral and olfactory preferences of the female RT between males and females were not observed using a conventional two-choice device; we then explored the neuro-immunohistochemical evidence in the brains of RT females. We found that male urine elicited significantly higher c-fos expression in the accessory olfactory system and sex-related brain regions in females than female urine did. On the other hand, the differences of volatile compounds and major urinary proteins (MUPs) in both voided urine and preputial glands (PGs) of the RT were detected using gas chromatography-mass spectrometer, sodium dodecyl sulfate-polyacrylamide gel electrophoresis, isoelectric focusing electrophoresis, and liquid chromatography-electrospray ionization mass spectrometry. We found that PG-derived 1-(4,5-dihydro-2-thiazolyl)-ethanone and total MUPs were more abundant in males versus females, suggesting these sexually divergent components might activate the female's accessory olfactory system. In conclusion, the neuro-immunohistochemical evidence indicated that potential sex pheromones might exist in RT; however, the strength of the chemical signal might be too weak to cause behavioral responses in females.

3.
Animals (Basel) ; 13(11)2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37889661

RESUMO

The predation and/or dispersal of Quercus seeds by rodents play an important role in the creation of the tree species. The present study examined the effects of community habitats on the predation and dispersal of Quercus wutaishanica seeds by rodents. We released seeds with densities set at 2, 4, 8, 16, and 32 seed square meter with litter cover, soil burial, and bare ground in the Liupan Mountains National Nature Reserve in the Ningxia Hui Autonomous Region, northwest China. The results showed that (1) the litter cover and soil burial significantly increased the seed survival probability compared with bare ground treatments, especially the predation in situ (PIS) (p < 0.05). Both the scatter hoarding (SH) and larder hoarding (LH) for litter cover and soil burial were significantly increased compared with bare ground (p < 0.05). (2) The large seeds are preferentially predated after dispersal and their long-distance dispersal (>5 m) was significantly greater than that of small seeds (p < 0.05), while small seeds are more likely to be preyed on in situ or during short-distance dispersal (<3 m). (3) The Q. wutaishanica seed predation by rodents increased at a high density rather than at a low density, indicating a negative density-dependent predation. These findings provide insights into the ecological characteristics of Quercus tree regeneration and shed light on the coexistence between rodents and different-sized seeds.

4.
Front Plant Sci ; 13: 999026, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36311139

RESUMO

Photoinhibition decreases photosynthetic capacity and can therefore affect the plant survival, growth, and distribution, but little is known about how it affects on kindred tree species. We conducted field experiments to measure the photosynthetic, growth and physiological performances of two maple species (Acer mono and A. pseudosieboldianum) seedlings at four light intensities (100%, 75%, 55%, and 20% of full light) and evaluated the adaptability of seedlings. We found that: (1) A. mono seedlings have larger light saturated photosynthetic rates (A max), the light saturation point (LSP), and lower light compensation point (LCP) than A. pseudosieboldianum seedlings, thus indicating that the former has a stronger light utilization ability. (2) A. mono seedlings under 75% light intensity and had higher seedling height (SH), basal stem diameter (BSD), leaf number (LN), leaf area per plant (LAPP) and total dry weight (TDW), while A. pseudosieboldianum seedling at 55% light intensity displayed greater growth advantages, which agreed with their response of light saturated photosynthetic rate. Morphological plasticity adjustments such as decreased root shoot ratio (RSR) and increased specific leaf area (SLA) showed how seedlings adapt to weak light environments. (3) 100% and 20% light intensities increased the malondialdehyde (MDA) content of two maple seedlings, indicating that very strong or very weak light could lead to the imbalance of reactive oxygen species (ROS) metabolism. The regulation of antioxidant enzyme activities such as superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT), as well as the content of osmoregulation substances such as free proline and soluble protein, are the main mechanisms of plant adaptation to light stress. Although both A. mono and A. pseudosieboldianum are highly shade tolerant, subtle differences in the photosynthetic, morphological and physiological traits underpinning their shade tolerance suggest A. pseudosieboldianum has the advantage to deal with the light threat. Future studies should focus on the expression level of photosynthesis-related genes and cell, to better understand the adaptation mechanism of plants to light variation which facilitates forest development, either natural or via silvicultural practices. This information expands our understanding of the light-regulating mechanism of trees, which contributes to develop management practices to support natural forest regeneration.

5.
J Biol Chem ; 296: 100417, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33587951

RESUMO

Induction of fetal hemoglobin to overcome adult ß-globin gene deficiency is an effective therapeutic strategy to ameliorate human ß-hemoglobinopathies. Previous work has revealed that fetal γ-globin can be translationally induced via integrated stress signaling, but other studies have indicated that activating stress may eventually suppress γ-globin expression transcriptionally. The mechanism by which γ-globin expression is regulated at the translational level remains largely unknown, limiting our ability to determine whether activating stress is a realistic therapeutic option for these disorders. In this study, we performed a functional CRISPR screen targeting protein arginine methyltransferases (PRMTs) to look for changes in γ-globin expression in K562 cells. We not only discovered that several specific PRMTs may block γ-globin transcription, but also revealed PRMT1 as a unique family member that is able to suppress γ-globin synthesis specifically at the translational level. We further identified that a non-AUG uORF within the 5' untranslated region of γ-globin serves as a barrier for translation, which is bypassed upon PRMT1 deficiency. Finally, we found that this novel mechanism of γ-globin suppression could be pharmacologically targeted by the PRMT1 inhibitor, furamidine dihydrochloride. These data raise new questions regarding methyltransferase function and may offer a new therapeutic direction for ß-hemoglobinopathies.


Assuntos
Proteína-Arginina N-Metiltransferases/metabolismo , Proteínas Repressoras/metabolismo , gama-Globinas/metabolismo , Hemoglobina Fetal/biossíntese , Hemoglobina Fetal/genética , Hemoglobina Fetal/farmacologia , Expressão Gênica/genética , Regulação da Expressão Gênica/genética , Células HEK293 , Humanos , Células K562 , Metiltransferases/metabolismo , Biossíntese de Proteínas/genética , Proteína-Arginina N-Metiltransferases/antagonistas & inibidores , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/fisiologia , Proteínas Repressoras/genética , Proteínas Repressoras/fisiologia , Globinas beta/metabolismo , gama-Globinas/genética
6.
Phytother Res ; 35(2): 1033-1047, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33006176

RESUMO

Rheumatoid arthritis (RA) is a chronic autoimmune disease that affects not only joints but also multiple organ systems including cardiovascular system. Endothelial dysfunction plays an important role in cardiovascular diseases (CVD). In RA, endothelial dysfunction exists at both the macrovascular and the microvascular levels, which is a precursor to vasculitis. This study aimed to investigate the pathogenesis of vasculitis and the therapeutic effect of CP-25 on vasculitis in high-fat diet (HFD) collagen-induced arthritis (CIA) rats. Experimental groups were divided into normal group, HFD group, CIA group, HFD CIA group, CP-25 group and MTX group. In vitro, IL-17A was used to stimulate human umbilical vein endothelial cells (HUVECs), and then CP-25 was used to intervene. Results showed that CP-25 reduced global scoring (GS), arthritis index (AI), and swollen joint count (SJC) scores, improved histopathological score, reduced T cells percentage, and decreased IL-17A and ICAM-1 levels. Besides, CP-25 reduced the expression of p-STAT3 to normal levels in vascular of HFD CIA rats. In vitro, IL-17A promoted the expression of p-JAK1, p-JAK2, p-JAK3, pSTAT3, and ICAM-1, and CP-25 inhibited the expression of p-JAK1, p-JAK2, p-JAK3, p-STAT3, and ICAM-1. In conclusion, CP-25 might inhibit endothelial cell activation through inhibiting IL-17A/JAK/STAT3 signaling pathway, which improves vasculitis in HFD CIA rats.


Assuntos
Artrite Reumatoide/tratamento farmacológico , Dieta Hiperlipídica/métodos , Células Endoteliais/metabolismo , Glucosídeos/uso terapêutico , Interleucina-17/metabolismo , Monoterpenos/uso terapêutico , Vasculite/tratamento farmacológico , Animais , Modelos Animais de Doenças , Glucosídeos/farmacologia , Humanos , Masculino , Monoterpenos/farmacologia , Ratos , Transdução de Sinais
7.
Front Pharmacol ; 11: 676, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32477138

RESUMO

OBJECTIVE: To explore the role of B cells in rheumatoid arthritis (RA) and the potential effects and mechanisms of etanercept on B cells. METHODS: In RA patients, the levels of tumor necrosis factor-α (TNF-α) and B cell activating factor (BAFF) were detected by ELISA. The percentage of B cell subsets was measured by flow cytometry. Laboratory indicators (rheumatoid factor, C-reactive protein, erythrocyte sedimentation rate) and clinical indicators (disease activity score in 28 joints, health assessment questionnaire score, swollen joint counts, tender joint counts) were measured. The correlation between B cell subsets and laboratory indicators or clinical indicators was analyzed. In mice, B cells proliferation was detected by CCK-8 kit. The expression of TNFRII and the percentage of B cell subsets in spleen were detected by flow cytometry. The expressions of TRAF2, p38, P-p38, p65, P-p65 in B cells were detected by WB. RESULTS: The percentage of CD19-CD27+CD138+ plasma B cells was positively correlated with ESR or RF. Etanercept could decrease the percentage of CD19+ total B cells, CD19+CD27+ memory B cells and CD19-CD27+CD138+ plasma B cells, reduce the levels of TNF-α, BAFF, relieve clinical and laboratory indicators in RA patients. In addition, etanercept could inhibit the proliferation of B cells, bate the differentiation of transitional B cells to mature B cells, down-regulate the expression of TNFRII, TRAF2, P-p38, P-p65 in B cells. CONCLUSION: B cells act a key role in the pathogenesis of RA. Etanercept inhibits B cells differentiation by down-regulating TNFRII/TRAF2/NF-κB signaling pathway.

8.
Theranostics ; 10(10): 4437-4452, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32292506

RESUMO

The proto-oncogene c-Myc regulates multiple biological processes mainly through selectively activating gene expression. However, the mechanisms underlying c-Myc-mediated gene repression in the context of cancer remain less clear. This study aimed to clarify the role of PRMT5 in the transcriptional repression of c-Myc target genes in gastric cancer. Methods: Immunohistochemistry was used to evaluate the expression of PRMT5, c-Myc and target genes in gastric cancer patients. PRMT5 and c-Myc interaction was assessed by immunofluorescence, co-immunoprecipitation and GST pull-down assays. Bioinformatics analysis, immunoblotting, real-time PCR, chromatin immunoprecipitation, and rescue experiments were used to evaluate the mechanism. Results: We found that c-Myc directly interacts with protein arginine methyltransferase 5 (PRMT5) to transcriptionally repress the expression of a cohort of genes, including PTEN, CDKN2C (p18INK4C), CDKN1A (p21CIP1/WAF1), CDKN1C (p57KIP2) and p63, to promote gastric cancer cell growth. Specifically, we found that PRMT5 was required to promote gastric cancer cell growth in vitro and in vivo, and for transcriptional repression of this cohort of genes, which was dependent on its methyltransferase activity. Consistently, the promoters of this gene cohort were enriched for both PRMT5-mediated symmetric di-methylation of histone H4 on Arg 3 (H4R3me2s) and c-Myc, and c-Myc depletion also upregulated their expression. H4R3me2s also colocalized with the c-Myc-binding E-box motif (CANNTG) on these genes. We show that PRMT5 directly binds to c-Myc, and this binding is required for transcriptional repression of the target genes. Both c-Myc and PRMT5 expression levels were upregulated in primary human gastric cancer tissues, and their expression levels inversely correlated with clinical outcomes. Conclusions: Taken together, our study reveals a novel mechanism by which PRMT5-dependent transcriptional repression of c-Myc target genes is required for gastric cancer progression, and provides a potential new strategy for therapeutic targeting of gastric cancer.


Assuntos
Adenocarcinoma/metabolismo , Histonas/metabolismo , Proteína-Arginina N-Metiltransferases/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Neoplasias Gástricas/metabolismo , Adenocarcinoma/patologia , Linhagem Celular Tumoral , Progressão da Doença , Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Metilação , Regiões Promotoras Genéticas , Proto-Oncogene Mas , Neoplasias Gástricas/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...